Media Móvil Centrada
Cuando se calcula una media móvil, la colocación de la media en el periodo de tiempo medio que tiene sentido en el ejemplo anterior se calculó el promedio de los primeros períodos de tiempo 3 y lo colocó junto al periodo 3. Podríamos haber colocado el medio en el medio de la intervalo de tiempo de tres períodos, es decir, al lado de periodo 2. Esto funciona bien con períodos de tiempo impares, pero no tan bueno para períodos iguales de tiempo. Entonces, ¿dónde podríamos colocar la primera media móvil cuando M 4 Técnicamente, el promedio móvil caería en t 2.5, 3.5. Para evitar este problema que suavizar los MAs utilizando M 2. Así que suavizar los valores suavizados Si tenemos una media de un número par de términos, tenemos que suavizar los valores suavizados La siguiente tabla muestra los resultados utilizando M 4.David, Sí, es MapReduce destinado a funcionar en una gran cantidad de datos. Y la idea es que, en general, el mapa y reducir funciones shouldn39t importa cuántos mapeadores o cuántas reductores hay, that39s simplemente optimización. Si usted piensa cuidadosamente sobre el algoritmo que he publicado, se puede ver que doesn39t materia que mapeador obtiene qué partes de los datos. Cada registro de entrada estará disponible para todos los reducen operación que lo necesita. ndash Joe K Sep 18 de las 12 de la 22:30 En lo mejor de mi entendimiento media móvil no es muy bien los mapas de paradigma MapReduce ya que su cálculo se ventana sobre datos ordenados desliza en esencia, mientras que la RM es el procesamiento de los intervalos que no se intersectado de datos ordenados. Solución que veo es el siguiente: a) Aplicar particionador a medida para ser capaz de hacer dos particiones diferentes en dos carreras. En cada ejecutar sus reductores obtendrá diferentes rangos de datos y calcular la media móvil donde approprieate Voy a tratar de ilustrar: En los datos de la primera tanda de reductores debe ser: R1: Q1, Q2, Q3, Q4 R2: Q5, Q6, Q7, Q8 . aquí se cacluate media móvil para algunas Qs. En su próxima ejecución reductores deben obtener datos como: R1: Q1. Q6 R2: Q6. Q10 R3: Q10..Q14 Y caclulate el resto de las medias móviles. A continuación, tendrá que agregar los resultados. Idea de particionador personalizado que tendrá dos modos de funcionamiento - cada vez que se divide en intervalos iguales pero con algún cambio. En un pseudocódigo que se verá como esto. partición (keySHIFT) / (MAXKEY / numOfPartitions) donde: SHIFT será tomado de la configuración. MAXKEY valor máximo de la llave. Asumo para simplificar, que comienzan con cero. RecordReader, en mi humilde opinión no es una solución ya que se limita a la división específica y no puede deslizarse sobre escisiones límite. Otra solución sería implementar una lógica personalizada de los datos de entrada de división (que es parte de la InputFormat). Se puede hacer que hacer 2 toboganes diferentes, similar a la partición. respondieron 17 de Sep 12 de la 8: promedios 59Moving promedios móviles con bases de datos convencionales, el valor medio es a menudo la primera, y una de las estadísticas de resumen, más útiles para el cálculo. Cuando los datos se encuentra en la forma de una serie de tiempo, la serie media es una medida útil, pero no refleja la naturaleza dinámica de los datos. Los valores medios calculados durante períodos en cortocircuito, ya sea anterior al período actual o se centraron en el período actual, son a menudo más útil. Debido a que tales valores medios variarán, o mover, ya que los actuales período se mueve desde el tiempo t 2, t 3. etc que se conocen como las medias móviles (MAS). Una media móvil simple es (normalmente) el promedio no ponderado de los valores anteriores k. Un promedio móvil ponderado exponencialmente es esencialmente la misma que una media móvil simple, pero con contribuciones a la media ponderada por su proximidad a la hora actual. Debido a que no es uno, sino toda una serie de promedios para cualquier serie dada en movimiento, el conjunto de Mas puede ser trazada a sí mismos en los gráficos, analizada como una serie, y se utiliza en el modelado y predicción. Una gama de modelos se puede construir usando medias móviles, y estos son conocidos como modelos MA. Si estos modelos se combinan con autorregresivo (AR) modelos de los modelos compuestos resultantes se conocen como modelos ARMA o ARIMA (el I es para integrado). promedios móviles simple, ya una serie de tiempo se pueden considerar como un conjunto de valores,, t 1,2,3,4, n el promedio de estos valores se pueden calcular. Si se supone que n es bastante grande, y seleccionar un entero k que es mucho menor que n. podemos calcular un conjunto de medias de bloques, o promedios móviles simples (de orden k): Cada medida representa la media de los valores de datos durante un intervalo de k observaciones. Tenga en cuenta que el primer MA posible de orden k Gt0 es que para t k. De manera más general, podemos dejar el subíndice adicional en las expresiones anteriores y escribir: Esto indica que la media estimada en el momento t es el promedio simple del valor observado en el tiempo t y los pasos k -1 de tiempo anteriores. Si se aplican pesos que disminuye la contribución de las observaciones que están más lejos en el tiempo, se dice que está suavizado exponencial de la media móvil. Las medias móviles se utilizan a menudo como una forma de previsión, por lo que el valor estimado para una serie en el tiempo t 1, S t1. se toma como el MA para el período hasta e incluyendo el tiempo t. p. ej. del día de hoy estimación se basa en un promedio de los valores registrados anteriores hasta e incluyendo el de ayer (para datos diarios). medias móviles simples pueden ser vistos como una forma de suavizado. En el ejemplo que se ilustra a continuación, el conjunto de datos de la contaminación del aire se muestra en la introducción de este tema ha sido aumentada por una línea de 7 días de media móvil (MA), se muestra en rojo. Como puede verse, la línea MA suaviza los picos y valles en los datos y puede ser muy útil en la identificación de tendencias. La fórmula de cálculo estándar hacia adelante significa que los primeros puntos k -1 de datos no tienen valor MA, pero a partir de entonces los cálculos se extienden hasta el punto final de datos en la serie. PM10 valores medios diarios, Greenwich fuente: Red de Calidad del Aire de Londres, www. londonair. org. uk Una de las razones para el cálculo de promedios móviles simples de la manera descrita es que permite a los valores que se computará para todos los intervalos de tiempo de vez tk hasta el presente y, como se obtiene una nueva medición para el tiempo t 1, el MA para el tiempo t 1 puede añadirse al conjunto ya calculado. Esto proporciona un procedimiento sencillo para los conjuntos de datos dinámicos. Sin embargo, hay algunos problemas con este enfoque. Es razonable afirmar que el valor medio durante los 3 últimos períodos, por ejemplo, se debe colocar en el tiempo t-1, no el tiempo t. y para un MA más de un número par de períodos quizás debería estar situado en el punto medio entre dos intervalos de tiempo. Una solución a este problema es utilizar cálculos MA centrado, en el que el agente de administración en el tiempo t es la media de un conjunto de valores simétrica alrededor de t. A pesar de sus méritos evidentes, este enfoque no se utiliza por lo general, ya que requiere que los datos estén disponibles para los eventos futuros que pueden no ser el caso. En casos en los que el análisis es totalmente de una serie existente, el uso de Mas centrado puede ser preferible. medias móviles simples pueden ser considerados como una forma de suavización, eliminación de algunos componentes de alta frecuencia de una serie temporal y poner de relieve (pero no eliminar) las tendencias de una manera similar a la noción general de filtrado digital. De hecho, las medias móviles son una forma de filtro lineal. Es posible aplicar un cálculo de media móvil a una serie que ya ha sido alisado, es decir, suavizado o filtrado de una serie ya alisada. Por ejemplo, con un promedio móvil de orden 2, podemos considerarlo como se calcula utilizando pesos, por lo que el MA en 2 x 0,5 x 0,5 x 1 2. Del mismo modo, el MA en 3 x 0,5 x 0,5 x 2 3. Si nos aplicar un segundo nivel de suavizado o filtrado, tenemos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 es decir, el filtrado de 2 etapas proceso (o la convolución) ha producido una simétrica variable ponderada media móvil, con los pesos. Múltiples circunvoluciones pueden producir promedios móviles ponderados bastante complejas, algunas de las cuales han sido encontrados de uso particular en campos especializados, como en los cálculos de seguros de vida. Las medias móviles se pueden utilizar para eliminar los efectos periódicas si computado con la longitud de la periodicidad como conocida. Por ejemplo, con variaciones estacionales de datos mensual a menudo se pueden quitar (si este es el objetivo) por aplicar una simétrica media móvil de 12 meses con todos los meses ponderadas por igual, excepto la primera y la última que se pondera por medio. Esto es debido a que habrá 13 meses en el modelo simétrico (hora actual, t / -. 6 meses). El total se divide por 12. Los procedimientos similares pueden ser adoptados por cualquier periodicidad bien definido. promedios móviles ponderados exponencialmente (EWMA) con la simple fórmula de media móvil: todas las observaciones se ponderan por igual. Si llamamos a estos pesos iguales, alfa t. cada uno de los pesos k sería igual a 1 / k. por lo que la suma de los pesos sería 1, y la fórmula será: Ya hemos visto que múltiples aplicaciones de este resultado del proceso en los pesos variables. Con promedios móviles ponderados exponencialmente se deliberó reduce la contribución al valor medio de las observaciones que están más alejados en el tiempo, poniendo así de relieve los acontecimientos más recientes (locales). Esencialmente un parámetro de suavizado, 0LT LT1 alfa, se introduce, y la fórmula revisada para: Una versión simétrica de esta fórmula sería de la forma: Si se seleccionan los pesos en el modelo simétrico como los términos de los términos de la expansión binomial, (1/21/2) 2q. van a sumar a 1, y como q se hace grande, se aproximarán a la distribución normal. Esta es una forma de ponderación del núcleo, con la actuación Binomial como la función del núcleo. La convolución de dos etapas descrito en la subsección anterior es precisamente esta disposición, con q 1, dando los pesos. En suavizado exponencial es necesario utilizar un conjunto de pesos que suma a 1 y que reducen de tamaño geométricamente. Las ponderaciones utilizadas son típicamente de la forma: Para demostrar que estos pesos suman 1, consideran que la expansión de 1 / como una serie. Podemos escribir y desarrollar la expresión entre paréntesis, utilizando la fórmula del binomio (1- x) p. donde x (1-) y P -1, lo que da: Este continuación, proporciona una forma de media móvil ponderada de la forma: Esta suma puede escribirse como una relación de recurrencia: lo que simplifica en gran medida el cálculo, y evita el problema de que el régimen de ponderación debe ser estrictamente infinito por los pesos que su suma sea 1 (para valores pequeños de alfa. esto no suele ser el caso). La notación utilizada por diferentes autores varía. Algunos usan la letra S para indicar que la fórmula es esencialmente una variable alisado, y escribir: mientras que la literatura de la teoría de control a menudo utiliza Z en lugar de S para los valores exponencialmente ponderados o suavizadas (véase, por ejemplo, Lucas y Saccucci de 1990, LUC1 , y el sitio web del NIST para más detalles y ejemplos prácticos). Las fórmulas citadas anteriormente se derivan del trabajo de Roberts (1959, Rob1), pero Hunter (1986, HUN1) utiliza una expresión de la forma: que puede ser más apropiada para su uso en algunos procedimientos de control. Con alfa 1 la estimación media es simplemente su valor medido (o el valor del elemento de datos anterior). Con 0,5 la estimación es la media móvil simple de las mediciones actuales y anteriores. En previsión de los modelos de valor, S t. se utiliza a menudo como la estimación o el valor pronóstico para el próximo período de tiempo, es decir, como la estimación de x en el tiempo t 1. Por lo tanto tenemos: Esto muestra que el valor de previsión en el tiempo t 1 es una combinación de la media móvil exponencialmente ponderada anterior más un componente que representa el error de predicción ponderado, epsilon. en el tiempo t. Suponiendo una serie de tiempo que se da y se requiere un pronóstico, se requiere un valor de alfa. Esto puede estimarse a partir de los datos existentes mediante la evaluación de la suma de los errores de predicción al cuadrado obtener con diferentes valores de alfa para cada t 2,3. establecer la primera estimación que es el primer valor de datos observados, x 1. En aplicaciones de control el valor de alfa es importante en que se se utiliza en la determinación de los límites de control superior e inferior, y afecta a la longitud de ejecución promedio (ARL) que se espera antes de que estos límites de control se rompen (bajo el supuesto de que la serie de tiempo representa un conjunto de azar, idénticamente distribuidas variables independientes con varianza común). Bajo estas circunstancias, la varianza de la estadística de control: es (Lucas y Saccucci, 1990): Control de límites se fijan generalmente como múltiplos fijos de esta varianza asintótica, por ejemplo / - 3 veces la desviación estándar. Si alfa 0,25, por ejemplo, y los datos que están siendo monitorizados se supone que tiene una distribución normal, N (0,1), cuando en el control, los límites de control serán / - 1,134 y el proceso alcanzarán uno u otro límite en 500 pasos en promedio. Lucas y Saccucci (1990 LUC1) derivan las ARL para una amplia gama de valores alfa y bajo diversas hipótesis utilizando los procedimientos de la cadena de Markov. Se tabulan los resultados, incluyendo la provisión ARL cuando la media del proceso de control se ha cambiado por algún múltiplo de la desviación estándar. Por ejemplo, con un desplazamiento de 0,5 con alfa 0.25 el ARL es de menos de 50 pasos de tiempo. Los enfoques descritos anteriormente se conoce como suavizado exponencial simple. ya que los procedimientos se aplican una vez que la serie de tiempo y después análisis o los procesos de control se llevan a cabo en el conjunto de datos alisado resultante. Si el conjunto de datos incluye una tendencia y / o componentes estacionales, de dos o de tres etapas de suavizado exponencial puede ser aplicado como un medio de eliminar (explícitamente modelar) estos efectos (véase más adelante, la sección sobre predicción. Abajo, y el NIST ejemplo trabajó ). CHA1 Chatfield C (1975) El análisis de los tiempos de la serie: Teoría y Práctica. Chapman y Hall, Londres HUN1 Hunter J S (1986) El promedio móvil ponderado exponencialmente. J de Tecnología de Calidad, 18, 203-210 LUC1 Lucas J M, M Saccucci S (1990) ponderado exponencialmente en movimiento Esquemas de control Promedio: Propiedades y mejoras. Technometrics, 32 (1), 1-12 Rob1 Roberts S W (1959) Pruebas de control gráfico basado en medias móviles geométricas. Technometrics, 1, 239-2506.2 Las medias móviles ma 40 elecsales, orden 5 41 En la segunda columna de esta tabla, se muestra un promedio móvil de orden 5, que proporciona una estimación de la tendencia-ciclo. El primer valor en esta columna es el promedio de los primeros cinco observaciones (1989-1993), el segundo valor de la columna 5-MA es el promedio de los valores de 1990-1994 y así sucesivamente. Cada valor de la columna 5-MA es el promedio de las observaciones en el plazo de cinco años centrado en el año correspondiente. No hay valores para los dos primeros años o los últimos dos años debido a que no tiene dos observaciones a cada lado. En la fórmula anterior, en la columna 5-MA contiene los valores de sombrero con k2. Para ver lo que la estimación de la tendencia-ciclo parece, representamos gráficamente junto con los datos originales en la Figura 6.7. parcela 40, elecsales principal salesquot electricidad quotResidential, quotGWhquot ylab. xlab quotYearquot 41 líneas de 40 ma 40 elecsales, 5 41. col quotredquot 41 Observe cómo la tendencia (en rojo) es más suave que los datos originales y captura el movimiento principal de la serie de tiempo sin tener todas las fluctuaciones de menor importancia. El método de promedio móvil no permite estimaciones de T, donde t es cerca de los extremos de la serie de ahí la línea roja no se extiende a los bordes de la gráfica de cualquier lado. Más adelante vamos a utilizar métodos más sofisticados de la estimación de la tendencia-ciclo, que sí permiten estimaciones cerca de los puntos finales. El orden de la media móvil determina la suavidad de la estimación de la tendencia-ciclo. En general, un orden más grande significa una curva más suave. El siguiente gráfico muestra el efecto de cambiar el orden de la media móvil de los datos de venta de electricidad residenciales. medias móviles simples como estos son generalmente de orden impar (por ejemplo, 3, 5, 7, etc.) Esto es por lo que son simétricas: en una media móvil de m2k1 orden, hay k observaciones anteriores, K posteriores observaciones y la observación media que se promedian. Pero si m fue aún, ya no sería simétrica. promedios de medias móviles en movimiento Es posible aplicar una media móvil de una media móvil. Una razón para hacer esto es hacer un movimiento de orden par simétrico promedio. Por ejemplo, podríamos tener un promedio móvil de orden 4 y, a continuación, aplicar otra media móvil de orden 2 con los resultados. En la Tabla 6.2, esto se ha hecho durante los primeros años de los datos de producción de cerveza trimestrales australianos. beer2 ntegrada ventana de 40 ausbeer, inicia 1992 41 ma4 ma ntegrada 40 beer2, orden 4. Centro ma FALSO 41 ma2x4 ntegrada 40 beer2, orden 4. Centro VERDADERO 41 La notación 2times4-MA en la última columna significa un 4-MA seguido de un 2-MA. Los valores en la última columna se obtienen tomando una media móvil de orden 2 de los valores en la columna anterior. Por ejemplo, los primeros dos valores en la columna 4-MA son 451,2 (443,410,420,532) / 4 y 448,8 (410,420,532,433) / 4. El primer valor de la columna 2times4-MA es el promedio de estos dos: 450,0 (451.2448.8) / 2. Cuando un 2-MA deduce una media móvil de orden par (por ejemplo, 4), se llama una media móvil centrada de orden 4. Esto se debe a que los resultados son ahora simétrica. Para ver que este es el caso, podemos escribir la 2times4-MA de la siguiente manera: comenzar frac amp sombrero Bigfrac (S S S S) frac (S S S S) Gran amplificador frac y frac14y frac14y frac14y frac18y. terminan Ahora es un promedio ponderado de las observaciones, pero es simétrica. Otras combinaciones de medias móviles son también posibles. Por ejemplo, un 3times3-MA se utilizan a menudo, y consta de un promedio móvil de orden 3, seguido de otra media móvil de orden 3. En general, un orden par MA debe ser seguido por una aún MA fin de que sea simétrica. Del mismo modo, un MA orden impar debe ser seguido por un MA orden impar. La estimación de la tendencia-ciclo con datos estacionales El uso más común de las medias móviles centradas en la estimación de la tendencia-ciclo a partir de datos de temporada. Considere la 2times4-MA: frac y sombrero de frac14y frac14y frac14y frac18y. Cuando se aplica a los datos trimestrales, cada trimestre del año se da la misma importancia como los primeros y últimos términos se aplican al mismo trimestre en años consecutivos. En consecuencia, la variación estacional serán promediados y los valores resultantes de sombrero t tendrá poca o ninguna variación estacional restante. Un efecto similar se puede obtener usando un 8-MA 2times o una 2times 12-MA. En general, un 2times m-MA es equivalente a una media móvil ponderada de M1 con el fin de tomar todas las observaciones peso 1 / m a excepción de los primeros y últimos términos que tienen pesos 1 / (2m). Así que si el período de temporada es uniforme y de orden m, utilizar un 2times m-MA para estimar la tendencia-ciclo. Si el período de temporada es impar y de orden m, utilizar un m-MA para estimar el ciclo de tendencia. En particular, un 2times 12-MA se puede usar para estimar la tendencia-ciclo de datos mensuales y un 7-MA se puede usar para estimar la tendencia-ciclo de datos diarios. Otras opciones para el fin de la EM se suele dar lugar a estimaciones de tendencia-ciclo están contaminados por la estacionalidad en los datos. Ejemplo 6.2 El equipo eléctrico de fabricación Figura 6.9 muestra una 2times12-MA aplica al índice de pedidos de equipos eléctricos. Observe que la línea suave no muestra estacionalidad es casi la misma que la tendencia-ciclo se muestra en la Figura 6.2, que se calcula utilizando un método mucho más sofisticado que las medias móviles. Cualquier otra opción para el fin de la media móvil (excepto los días 24, 36, etc.) habría dado lugar a una línea suave que muestra algunas fluctuaciones estacionales. parcela 40 elecequip, ylab órdenes quotNew indexquot. quotgrayquot col, la principal la fabricación de equipos quotElectrical (zona euro) quot 41 líneas de 40 ma 40 elecequip, orden 12 41. col quotredquot 41 promedios móviles ponderados combinaciones de medias móviles resultar en promedios móviles ponderados. Por ejemplo, el 2x4-MA se discutió anteriormente es equivalente a una ponderada 5-MA con pesos dados por el frac, frac, frac, frac, frac. En general, un ponderada m-MA se puede escribir como sombrero t suma k aj y, donde k (m-1) / 2 y los pesos se dan por una, puntos, ak. Es importante que todos los pesos suma a uno y que son tan simétrica que un aj. El simple m-MA es un caso especial donde todos los pesos son iguales a 1 / m. Una de las principales ventajas de los promedios móviles ponderados es que con ellos se obtienen una estimación más suave de la tendencia-ciclo. En lugar de observaciones entrar y salir del cálculo en peso, sus pesos se aumentan lentamente y luego disminuyó lentamente que resulta en una curva suave. Algunos conjuntos específicos de pesos son ampliamente utilizados. Algunos de éstos se dan en la Tabla Promedios 6.3.Moving: ¿qué es esto los indicadores técnicos más populares, las medias móviles se usan para calcular la dirección de la tendencia actual. Cada tipo de media móvil (comúnmente escrito en este tutorial como MA) es un resultado matemático que se calcula promediando un número de puntos de datos anteriores. Una vez determinada, la media resultante se representa en un gráfico con el fin de permitir a los operadores miran datos suavizados en lugar de centrarse en las fluctuaciones de los precios del día a día que son inherentes a todos los mercados financieros. La forma más simple de una media móvil, apropiadamente conocido como una media móvil simple (SMA), se calcula tomando la media aritmética de un conjunto dado de valores. Por ejemplo, para calcular un promedio móvil de 10 días básica quiera sumar los precios de cierre de los últimos 10 días y luego dividir el resultado por 10. En la Figura 1, la suma de los precios de los últimos 10 días (110) es dividido por el número de días (10) para llegar a la media de 10 días. Si un operador desea ver a un promedio de 50 días en su lugar, el mismo tipo de cálculo se haría, pero incluiría los precios en los últimos 50 días. El promedio resultante de abajo (11) tiene en cuenta los últimos 10 puntos de datos con el fin de dar a los operadores una idea de cómo un activo tiene un precio en relación con los últimos 10 días. Tal vez te preguntas por qué los operadores técnicos llaman a esta herramienta de un solo una media promedio regular y no se mueve. La respuesta es que, como nuevos valores estén disponibles, los puntos de datos más antiguos deben ser retirados del grupo y los nuevos puntos de datos deben venir a reemplazarlos. Por lo tanto, el conjunto de datos se está moviendo constantemente para tener en cuenta nuevos datos, cuando esté disponible. Este método de cálculo se asegura de que sólo la información actual está siendo contabilizado. En la figura 2, una vez que se añade el nuevo valor del 5 al conjunto, el cuadro rojo (que representa los últimos 10 puntos de datos) se mueve hacia la derecha y el último valor de 15 se deja caer desde el cálculo. Debido a que el valor relativamente pequeño de 5 reemplaza el alto valor de 15, que se puede esperar para ver el promedio de la disminución conjunto de datos, lo que lo hace, en este caso del 11 al 10. ¿Qué los Medias Móviles Parezca Una vez que los valores de la MA se han calculado, que se trazan en un gráfico y luego se conectan para crear una línea de media móvil. Estas líneas curvas son comunes en las listas de los operadores técnicos, pero la forma en que se utilizan pueden variar drásticamente (más sobre esto más adelante). Como se puede ver en la figura 3, es posible añadir más de una media móvil a cualquier gráfico mediante el ajuste de la cantidad de períodos de tiempo utilizados en el cálculo. Estas líneas curvas pueden parecer una distracción o confuso al principio, pero interminables acostumbrarse a ellos con el paso del tiempo. La línea roja es simplemente el precio promedio de los últimos 50 días, mientras que la línea azul es el precio promedio de los últimos 100 días. Ahora que usted entiende lo que es una media móvil y lo que parece, así introduce un tipo diferente de media móvil y examina qué se diferencia de los ya mencionados media móvil simple. La media móvil simple es extremadamente popular entre los comerciantes, pero al igual que todos los indicadores técnicos, tiene sus críticos. Muchas personas sostienen que la utilidad de la SMA es limitada, ya que cada punto de la serie de datos se pondera la misma, independientemente de donde se encuentra en la secuencia. Los críticos argumentan que los datos más recientes es más importante que los datos más antiguos y debe tener una mayor influencia en el resultado final. En respuesta a esta crítica, los comerciantes comenzaron a dar más peso a los datos más recientes, que desde entonces ha llevado a la invención de varios tipos de nuevas medias, el más popular de los cuales es la media móvil exponencial (EMA). (Para la lectura adicional, consulte Conceptos básicos de los promedios móviles ponderados, y cuál es la diferencia entre una media móvil y un EMA) de media móvil exponencial La media móvil exponencial es un tipo de media móvil que le da más peso a los precios recientes en un intento de hacer que sea más sensible a la nueva información. El aprendizaje de la ecuación un tanto complicado para el cálculo de un EMA puede ser innecesario para muchos comerciantes, ya que casi todos los paquetes de gráficos hacen los cálculos para usted. Sin embargo, para que los geeks matemáticas hacia fuera allí, aquí es la ecuación EMA: Cuando se utiliza la fórmula para calcular el primer punto de la EMA, puede observar que no hay valor disponible para su uso como el EMA anterior. Este pequeño problema puede ser resuelto por el inicio del cálculo de una media móvil simple y continuando con la fórmula anterior a partir de ahí. Le hemos proporcionado con una hoja de cálculo muestra que incluye ejemplos de la vida real de cómo calcular la vez una media móvil simple y una media móvil exponencial. La diferencia entre la EMA y SMA Ahora que tiene una mejor comprensión de cómo se calculan la media móvil y la EMA, permite echar un vistazo a cómo se diferencian estos promedios. Al observar el cálculo de la EMA, se dará cuenta que se pone más énfasis en los puntos de datos recientes, por lo que es un tipo de promedio ponderado. En la figura 5, el número de períodos de tiempo utilizados en cada medio es idéntico (15), pero la EMA responde más rápidamente a los cambios en los precios. Observe cómo la EMA tiene un valor más alto que el precio va en aumento, y cae más rápido que la media móvil cuando el precio está disminuyendo. Esta respuesta es la razón principal por la que muchos comerciantes prefieren utilizar la EMA sobre el SMA. ¿Qué significan los diferentes promedios móviles media de días son un indicador totalmente personalizable, lo que significa que el usuario puede elegir libremente el tiempo que el marco que quieren cuando la creación de la media. Los periodos de tiempo más comunes utilizados en las medias móviles son 15, 20, 30, 50, 100 y 200 días. Cuanto más corto sea el período de tiempo utilizado para crear el promedio, más sensible será la de los cambios de precios. Cuanto más largo sea el período de tiempo, el menos sensible, o más suavizado, el promedio será. No hay un momento adecuado para utilizar cuando la configuración de los promedios móviles. La mejor manera de averiguar cuál funciona mejor para usted es experimentar con una serie de diferentes períodos de tiempo hasta que encuentre uno que se adapte a su estrategia. Medias Móviles: cómo usarlos Suscribirse a Noticias de usar para las últimas ideas y análisis Gracias por firmar con Investopedia Insights - Noticias de usar.
Comments
Post a Comment